

	1. Introduction	1
Rotating fluid introduces many novel features into the motion of the fl rotation.		
Taylor (1921) observed experimentally that, when a sphere is allow through a fluid that is in a state of solid body rotation, a column of fluid the sphere like a solid mass having zero axial velocity relative to the move		
 This phenomenon is now kn column and was predicted th Proudman (1916). A newly developed Higher (HOCS) is used to capture the phenomena of rotating fluid 	nown as the Taylor theoretically by order Compact scheme he non-linear flow d accurately.	
		Figure 1: Taylor col
	2. Objective	
 To solve actual PDEs with higher accuracy and less cost of computation. To capture Taylor column, vortex jump phenomena and other aspects of results of rotating fluid. 		

3. Why to use HOCS ?

- These are high accuracy finite difference approximations which is compact in nature.
- HOCS gives more accuracy even in coarser meshes.
- It consumes less CPU time and memory.
- Unconditionally stable.
- Easy boundary treatment (i.e. not having any ghost points).

Figure 2: (A) Nine point non compact stencil; (B) Nine point compact stencil; (C) Domain used.

Steady Motion of a Sphere in a Rotating Fluid - A Numerical Study Bapuji Sahoo* and T. V. S. Sekhar School of Basic Sciences, Indian Institute of Technology Bhubaneswar - 752050

4. Formulation of the problem

luid due to effect of

ved to move slowly l is pushed ahead of ving body.

lumn experiment.

experimental

$$\nabla \cdot \boldsymbol{q} = 0$$

$$\nabla \times \boldsymbol{q} = \boldsymbol{\omega}$$

$$(\boldsymbol{q}.\,\boldsymbol{\nabla})\,\boldsymbol{q}=\frac{1}{\rho}\boldsymbol{\nabla}p+\,\boldsymbol{\nu}\,\boldsymbol{\nabla}^2\,\boldsymbol{q}$$

where fluid velocity $q = (q_{r}, q_{\theta}, q_{\varphi})$ and $q_{r}, q_{\theta}, q_{\varphi}$ could be written in spherical form (r, θ, φ) in terms of stream function (ψ) , vorticity (ω) and angular velocity (Ω) as

$$q_r = \frac{1}{r^2 \sin \theta} \frac{\partial \psi}{\partial \theta}, \qquad q_{\theta} = -\frac{1}{r \sin \theta}$$

* The dimensionless equations in spherical polar co-ordinates (r, θ, ϕ) with the transformation $r = e^{\xi}$ are

$$\frac{\partial^2 \psi}{\partial \xi^2} + \frac{\partial^2 \psi}{\partial \theta^2} - \frac{\partial \psi}{\partial \xi} - \cot \theta \frac{\partial \psi}{\partial \theta} = -e^{2\xi}$$

$$\frac{\partial^2 \omega}{\partial \xi^2} + \frac{\partial^2 \omega}{\partial \theta^2} - \frac{\partial \omega}{\partial \xi} - \cot \theta \frac{\partial \omega}{\partial \theta} = \frac{Re}{e^{\xi} \sin \theta} \left\{ \left(\frac{\partial \psi}{\partial \theta} \frac{\partial \omega}{\partial \xi} - \frac{\partial \psi}{\partial \xi} \frac{\partial \omega}{\partial \theta} \right) \right\} + 2 \left(\cot \theta \frac{\partial \psi}{\partial \xi} - \frac{\partial \psi}{\partial \theta} \right) \omega - \frac{2T^2}{Re} \left(\cot \theta \frac{\partial \Omega}{\partial \xi} - \frac{\partial \Omega}{\partial \theta} \right) \Omega$$
$$\frac{\partial^2 \Omega}{\partial \xi} = \frac{\partial \Omega}{\partial \xi} - \frac{\partial \Omega}{\partial \theta} Re \left(\frac{\partial \psi}{\partial \Omega} - \frac{\partial \psi}{\partial \theta} \right) \Omega$$

$$-\frac{\partial\omega}{\partial\xi} - \cot\theta \frac{\partial\omega}{\partial\theta} = \frac{Re}{e^{\xi}\sin\theta} \left\{ \left(\frac{\partial\psi}{\partial\theta} \frac{\partial\omega}{\partial\xi} - \frac{\partial\psi}{\partial\xi} \frac{\partial\omega}{\partial\theta} \right) \right\}$$
$$+ 2 \left(\cot\theta \frac{\partial\psi}{\partial\xi} - \frac{\partial\psi}{\partial\theta} \right) \omega - \frac{2T^2}{Re} \left(\cot\theta \frac{\partial\Omega}{\partial\xi} - \frac{\partial\Omega}{\partial\theta} \right) \Omega$$

$$\frac{\partial^2 \Omega}{\partial \xi^2} + \frac{\partial^2 \Omega}{\partial \theta^2} - \frac{\partial \Omega}{\partial \xi} - \cot \theta \frac{\partial \Omega}{\partial \theta} = \frac{R}{e^{\xi} \sin \theta}$$

where Re and T represents the Reynolds number and Taylor number respectively.

Boundary conditions

On the surface of the sphere (
$$\xi = 0$$
)

the sphere
$$(\xi = 0)$$

 $= \frac{\partial \psi}{\partial \xi} = 0, \quad \Omega = 0, \quad \omega = -\frac{1}{\sin \theta} \frac{\partial^2 \psi}{\partial \xi^2}$
from the sphere $(\xi \to \infty)$
 $= \frac{1}{2}e^{2\xi}\sin^2\theta, \quad \Omega = e^{2\xi}\sin^2\theta, \quad \omega = 0.$
5. Validation
6. Validation
6. Validation
7. Validation
6. Validation
7. Validation
7. Validation
9. Validat

At large distance

the of the sphere (
$$\xi = 0$$
)
 $\psi = \frac{\partial \psi}{\partial \xi} = 0, \qquad \Omega = 0, \qquad \omega = -\frac{1}{\sin \theta} \frac{\partial^2 \psi}{\partial \xi^2}$
ces from the sphere ($\xi \to \infty$)
 $\psi = \frac{1}{2}e^{2\xi}\sin^2\theta, \qquad \Omega = e^{2\xi}\sin^2\theta, \qquad \omega = 0.$
5. Validation
6. Validation
6. Validation
7. Validation
6. Validation
7. Validation
7. Validation
9. Validatio

 $rac{\partial \psi}{\partial r}$ and q_{arphi} \mathbf{O} $q_{\varphi} = \frac{1}{r \sin \varphi}$ $r \sin \theta$

°ω

in $\theta \mid \partial \theta \mid \partial \xi$ $\partial \xi \partial \theta$

Research Scholars' Day 2020 1

Numer. Methods Eng., 38 (1995), 3497-3512.