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1. Introduction 4 L 4. Formulation of the problem J ) 6. Results

** Governing equations

¢ Rotating fluid introduces many novel features into the motion of the fluid due to effect of
rotation. 7.q=0
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** Taylor (1921) observed experimentally that, when a sphere is allowed to move slowly
through a fluid that is in a state of solid body rotation, a column of fluid is pushed ahead of
the sphere like a solid mass having zero axial velocity relative to the moving body. 1
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¢ This phenomenon is now known as the Taylor . . . : :
P . . 4 C—" Axis of rotation where fluid velocity q = (g q¢ 4,) and g, q¢ ,q, could be written in spherical
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» To solve actual PDEs with higher accuracy and less cost of computation. 0% 064 0¢ 00 eSsin@ (\00 0¢ 0& 06 ), A
¢ To capture Taylor column, vortex jump phenomena and other aspects of experimental (A)
results of rotating fluid. oy oY 2T 2 00 90 Figure 6: (A) Streamlines; (B) Vorticity contours at Re = 200 for different T.
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{ 3. Why to use HOCS ? } L /. Surface pressure J
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** These are high accuracy finite difference approximations which is compact in nature. > : 5 cotf — = F o 4 >
** HOCS gives more accuracy even in coarser meshes. af 06 a€ 06 es sin ¢ \68 (35 (35 aHJ 100001 ey
*** It consumes less CPU time and memory.
% Unconditionally stable. where | Re and T represents the Reynolds number and Taylor number
¢ Easy boundary treatment (i.e. not having any ghost points). respectively. n. n_
*» Boundary conditions : ;
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/ . . \ ** Itis found that for low values of Re drag values increases as rotation increases. Also, forward
[ 5. Validation J separation bubble is observed, whose volume increases with increase of Taylor number (7).
. 1 ¢ This flow separation is called “Taylor Column" or “forward slug" in the theoretical studies of
(B) T 1 == macman ) Tanzosh and Stone (1994} and the experimental studies of Maxworthy (1970).
| " g Chikdess 8 “* Downstream separation bubble which occurs due to the dominance of inertial forces around Re
S( |l g Besub P g = 25 to steady high Re of 200 shrink in size with increase of the rotation of the fluid.
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