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1. Introduction 4. Formulation of the problem

 The dimensionless equations in spherical polar co-ordinates ( 𝑟, 𝜃, 𝜑) with 

the transformation  𝑟 = 𝑒𝜉 are

6. Results

2. Objective

 To solve actual PDEs with higher accuracy and less cost of computation.
 To capture Taylor column, vortex jump phenomena and other aspects of experimental 

results of rotating fluid.

9. References

8.  Conclusion

5. Validation

7. Surface  pressure 3. Why to use HOCS ?

(C)   

 Rotating fluid introduces many novel features into the motion of the fluid due to effect of
rotation.

 Taylor (1921) observed experimentally that, when a sphere is allowed to move slowly
through a fluid that is in a state of solid body rotation, a column of fluid is pushed ahead of
the sphere like a solid mass having zero axial velocity relative to the moving body.

 This phenomenon is now known as the Taylor 
column and was predicted theoretically by 
Proudman (1916).

 A  newly developed  Higher order Compact scheme 
(HOCS) is used to capture the non-linear flow 
phenomena of rotating fluid accurately.                    

 These are high accuracy finite difference approximations which is compact in nature.
 HOCS gives more accuracy even in coarser meshes.
 It consumes less CPU time and memory.
 Unconditionally stable.
 Easy boundary treatment (i.e. not having any ghost points).
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Figure 2: (A) Nine point non compact stencil; (B) Nine point compact stencil; (C) Domain used.

Figure 1: Taylor column experiment.

 Governing equations

𝛻 . 𝒒 = 0

𝛻 × 𝒒 = 𝜔

(𝒒. 𝛻) 𝒒 =
1

𝜌
𝛻𝑝 + 𝜈 𝛻2 𝒒

where fluid velocity 𝒒 = (𝑞𝑟, 𝑞𝜃 ,𝑞𝜑) and 𝑞𝑟, 𝑞𝜃 ,𝑞𝜑 could be written in spherical 

form (𝑟, 𝜃, 𝜑) in terms of stream function (𝜓), vorticity (ω) and angular velocity 
(Ω) as

𝑞𝑟=
1

𝑟2 sin 𝜃

𝜕𝜓

𝜕𝜃
, 𝑞𝜃 = −

1
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and 𝑞𝜑 =

Ω

𝑟 sin 𝜃
.

where Re and T represents the Reynolds number and Taylor number
respectively.

 Boundary conditions

On the surface of the sphere (𝜉 = 0)

𝜓 =
𝜕𝜓

𝜕𝜉
= 0, Ω = 0, 𝜔 = −

1

sin 𝜃

𝜕2𝜓

𝜕𝜉2

At large distances from the sphere (𝜉 → ∞)

𝜓 =
1

2
𝑒2𝜉 sin2 𝜃 , Ω = 𝑒2𝜉 sin2 𝜃 , 𝜔 = 0.
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Figure 4: (A) Order of accuracy; (B) Comparison of drag values in presence of 
rotation (T) at Re = 0.12.
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Figure 5: (A) Streamlines; (B) Vorticity contours at Re = 0.12 for different T
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Figure 6: (A) Streamlines; (B) Vorticity contours at Re = 200 for different T.
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Figure 7: Pressure gradients on the surface of the sphere for (A) Re=0.12 (B) Re=200
for different T.

 It is found that for low values of Re drag values increases as rotation increases. Also, forward 
separation bubble is observed, whose volume increases with increase of Taylor number (T).

 This flow separation is called “Taylor Column" or “forward slug" in the theoretical studies of 
Tanzosh and Stone (1994} and the experimental studies of Maxworthy (1970).

 Downstream separation bubble which occurs due to the dominance of inertial forces around Re 
= 25 to steady high Re of 200 shrink in size with increase of the rotation of the fluid.
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